Rapid magnetofluidic mixing in a uniform magnetic field.
نویسندگان
چکیده
This paper reports the investigation of mixing phenomena caused by the interaction between a uniform magnetic field and a magnetic fluid in a microfluidic chamber. The flow system consists of a water-based ferrofluid and a mixture of DI water and glycerol. Under a uniform magnetic field, the mismatch in magnetization of the fluids leads to instability at the interface and subsequent rapid mixing. The mismatch of magnetization is determined by concentration of magnetic nanoparticles. Full mixing at a relatively low magnetic flux density up to 10 mT can be achieved. The paper discusses the impact of key parameters such as magnetic flux density, flow rate ratio and viscosity ratio on the mixing efficiency. Two main mixing regimes are observed. In the improved diffusive mixing regime under low field strength, magnetic particles of the ferrofluid migrate into the diamagnetic fluid. In the bulk transport regime under high field strength, the fluid system is mixed rapidly by magnetically induced secondary flow in the chamber. The mixing concept potentially provides a wireless solution for a lab-on-a-chip system that is low-cost, robust, free of induced heat and independent of pH level or ion concentration.
منابع مشابه
A Rapid Magnetofluidic Micromixer Using Diluted Ferrofluid
Abstract: Effective and rapid mixing is essential for various chemical and biological assays. The present work reports a simple and low-cost micromixer based on magnetofluidic actuation. The device takes advantage of magnetoconvective secondary flow, a bulk flow induced by an external magnetic field, for mixing. A paramagnetic stream of diluted ferrofluid and a non-magnetic stream are introduce...
متن کاملRapid mixing of Newtonian and non-Newtonian fluids in a three-dimensional micro-mixer using non-uniform magnetic field
The mixing of Newtonian and non-Newtonian fluids in a magnetic micro-mixer was studied numerically using ferrofluid. The mixing process was performed in a three-dimensional steady-state micro-mixer. A magnetic source was mounted at the entrance of the micro-channel to oscillate the magnetic particles. The effects of electric current, inlet velocity, size of magnetic particles, and non-Newtonia...
متن کاملEffect of Variable Thermal Conductivity and the Inclined Magnetic Field on MHD Plane Poiseuille Flow in a Porous Channel with Non-Uniform Plate Temperature
The aim of this paper is to investigate the effect of the variable thermal conductivity and the inclined uniform magnetic field on the plane Poiseuille flow of viscous incompressible electrically conducting fluid between two porous plates Joule heating in the presence of a constant pressure gradient through non-uniform plate temperature. It is assumed that the fluid injection occurs at lower pl...
متن کاملEffect of non-uniform Magnetic Field on Non-Newtonian Fluid Separation in a Diffuser
The purpose of the present study is to investigate the boundary layer separation point in a magnetohydrodynamics diffuser. As an innovation, the Re value on the separation point is determined for the non-Newtonian fluid flow under the influence of the non-uniform magnetic field due to an electrical solenoid, in an empirical case. The governing equations include continuity and momentum are solve...
متن کاملEffect of uniform magnetic field on dose distribution in the breast radiotherapy
Background: To reduce the dose to normal tissues surrounding the treated breast, a uniform magnetic field was used within a humanoid phantom in breast radiotherapy. Materials and Methods: Monte Carlo simulations were performed with GEANT4, irradiating humanoid phantoms in a magnetic field. To reconstruct phantoms, computed tomography (CT) data slices of four patients were used for the Monte Car...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 12 22 شماره
صفحات -
تاریخ انتشار 2012